Abstract

This article provides a rigorous proof of a conjecture by E. C. Bain in 1924 on the optimality of the so-called Bain strain based on a criterion of least atomic movement. A general framework that explores several such optimality criteria is introduced and employed to show the existence of optimal transformations between any two Bravais lattices. A precise algorithm and a graphical user interface to determine this optimal transformation is provided. Apart from the Bain conjecture concerning the transformation from face-centred cubic to body-centred cubic, applications include the face-centred cubic to body-centred tetragonal transition as well as the transformation between two triclinic phases of terephthalic acid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.