Abstract
The paper considers a class of decision problems with an infinite time horizon that contains Markov decision problems as an important special case. Our interest concerns the case where the decision maker cannot commit himself to his future action choices. We model the decision maker as consisting of multiple selves, where each history of the decision problem corresponds to one self. Each self is assumed to have the same utility function as the decision maker. Our results are twofold: Firstly, we demonstrate that the set of subgame optimal policies coincides with the set of subgame perfect equilibria of the decision problem. Furthermore, the set of subgame optimal policies is contained in the set of optimal policies and the set of optimal policies is contained in the set of Nash equilibria. Secondly, we show that the set of pure subgame optimal policies is the unique minimal curb set of the decision problem. The concept of a subgame optimal policy is therefore robust to the absence of commitment technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.