Abstract

We consider a quadratic d. c. optimization problem on a convex set. The objective function is represented as the difference of two convex functions. By reducing the problem to the equivalent concave programming problem we prove a sufficient optimality condition in the form of an inequality for the directional derivative of the objective function at admissible points of the corresponding level surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.