Abstract

We study the boundary control problems for stochastic parabolic equations with Neumann boundary conditions. Imposing super-parabolic conditions, we establish the existence and uniqueness of the solution of state and adjoint equations with non-homogeneous boundary conditions by the Galerkin approximations method. We also find that, in this case, the adjoint equation (BSPDE) has two boundary conditions (one is non-homogeneous, the other is homogeneous). By these results we derive necessary optimality conditions for the control systems under convex state constraints by the convex perturbation method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.