Abstract
We present optimality conditions for a class of nonsmooth and nonconvex constrained optimization problems. To achieve this aim, various well-known constraint qualifications are extended based on the concept of tangential subdifferential and the relations between them are investigated. Moreover, local and global necessary and sufficient optimality conditions are derived in the absence of convexity of the feasible set. In addition to the theoretical results, several examples are provided to illustrate the advantage of our outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.