Abstract
In this paper, the definitions of Clarke generalized directional alpha -derivative and Clarke generalized gradient are introduced for a locally Lipschitz fuzzy function. Further, a nonconvex nonsmooth optimization problem with fuzzy objective function and both inequality and equality constraints is considered. The Karush-Kuhn-Tucker optimality conditions are established for such a nonsmooth extremum problem. For proving these conditions, the approach is used in which, for the considered nonsmooth fuzzy optimization problem, its associated bi-objective optimization problem is constructed. The bi-objective optimization problem is solved by its associated scalarized problem constructed in the weighting method. Then, under invexity hypotheses, (weakly) nondominated solutions in the considered nonsmooth fuzzy minimization problem are characterized through Pareto solutions in its associated bi-objective optimization problem and Karush-Kuhn-Tucker points of the weighting problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.