Abstract

ABSTRACTThe article is concerned with the optimistic formulation of a multiobjective bilevel optimization problem with locally Lipschitz continuous inclusion constraints. Using a variable ordering structure defined by a Bishop–Phelps cone, we investigate necessary optimality conditions for locally weakly nondominated solutions. Reducing the problem into a one-level nonlinear and nonsmooth program, we use the extremal principle by Mordukhovich to get fuzzy optimality conditions. More explicit conditions with the initial data are obtained using both the Ekeland’s variational principle and the support function. Fortunately, the Lipschitz property of a set-valued mapping is conserved for its support function. An appropriate regularity condition is given to help us discern the Lagrange-Kuhn-Tucker multipliers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.