Abstract

We address the problem of optimal scale-dependent parameter learning in total variation image denoising. Such problems are formulated as bilevel optimization instances with total variation denoising problems as lower-level constraints. For the bilevel problem, we are able to derive M-stationarity conditions, after characterizing the corresponding Mordukhovich generalized normal cone and verifying suitable constraint qualification conditions. We also derive B-stationarity conditions, after investigating the Lipschitz continuity and directional differentiability of the lower-level solution operator. A characterization of the Bouligand subdifferential of the solution mapping, by means of a properly defined linear system, is provided as well. Based on this characterization, we propose a two-phase non-smooth trust-region algorithm for the numerical solution of the bilevel problem and test it computationally for two particular experimental settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call