Abstract

Robust bi-level programming problems are a newborn branch of optimization theory. In this study, we have considered a bi-level model with constraint-wise uncertainty at the upper-level, and the lower-level problem is fully convex. We use the optimal value reformulation to transform the given bi-level problem into a single-level mathematical problem and the concept of robust counterpart optimization to deal with uncertainty in the upper-level problem. Necessary optimality conditions are beneficial because any local minimum must satisfy these conditions. As a result, one can only look for local (or global) minima among points that hold the necessary optimality conditions. Here we have introduced an extended non-smooth robust constraint qualification (RCQ) and developed the KKT type necessary optimality conditions in terms of convexifactors and subdifferentials for the considered uncertain two-level problem. Further, we establish as an application the robust bi-level Mond-Weir dual (MWD) for the considered problem and produce the duality results. Moreover, an example is proposed to show the applicability of necessary optimality conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call