Abstract

Both parametric and nonparametric necessary and sufficient optimality conditions are established for a class of nonsmooth generalized fractional programming problems containing ρ-convex functions. Subsequently, these optimality criteria are utilized as a basis for constructing two parametric and four parameter-free duality models and proving appropriate duality theorems. Several classes of generalized fractional programming problems, including those with arbitrary norms, square roots of positive semidefinite quadratic forms, support functions, continuous max functions, and discrete max functions, which can be viewed as special cases of the main problem are briefly discussed. The optimality and duality results developed here also contain, as special cases, similar results for nonsmooth problems with fractional, discrete max, and conventional objective functions which are particular cases of the main problem considered in this paper

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.