Abstract
The cardinality constrained optimization problem (CCOP) is an optimization problem where the maximum number of nonzero components of any feasible point is bounded. In this paper, by rewriting the cardinality constraint as a constraint requiring that any feasible point must lie in the union of certain subspaces, we consider CCOP as a mathematical program with disjunctive subspaces constraints (MPDSC). Since a subspace is a special case of a convex polyhedral set, MPDSC is a special case of the mathematical program with disjunctive constraints (MPDC). Using the special structure of subspaces, we are able to obtain more precise formulas for the tangent and (directional) normal cones for the disjunctive set of subspaces. We then obtain first and second order optimality conditions by using the corresponding results from MPDC. Thanks to the special structure of the subspace, we are able to obtain some results for MPDSC that do not hold in general for MPDC. In particular we show that the relaxed constant positive linear dependence (RCPLD) is a sufficient condition for the metric subregularity/error bound property for MPDSC which is not true for MPDC in general. Finally we show that under all constraint qualifications presented in this paper, certain exact penalization holds for CCOP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.