Abstract

In this paper, we consider arbitrary tree networks where every processor, except one, called the root, executes the same program. We show that, to design a depth-first token circulation protocol in such networks, it is necessary to have at least configurations, where n is the number of processors in the network and Δi is the degree of processor pi. We then propose a depth-first token circulation algorithm which matches the above minimal number of configurations. We show that the proposed algorithm is self-stabilizing, i.e., the system eventually recovers itself to a legitimate state after any perturbation modifying the state of the processors. Hence, the proposed algorithm is optimal in terms of the number of configurations and no extra cost is involved in making it stabilizing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.