Abstract
A model that includes the mechanical response of a vehicle to a demanded change in acceleration is analyzed to determine the string stability of a platoon of autonomous vehicles. The response is characterized by a first-order time constant τ and an explicit delay td. The minimum value of the acceleration feedback control gain is found from calculations of the velocity of vehicles following a lead vehicle that decelerates sharply from high speed to low speed. Larger values of ξ (in the stable range) give larger values of deceleration for vehicles in the platoon. Optimal operation is attained close to the minimum value of ξ for stability. Small oscillations are found after the main peak in deceleration for ξ in the stable region but near the transition to instability. A theory for predicting the frequency and amplitude of the oscillations is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.