Abstract

SummaryWe develop a unified theory of designs for controlled experiments that balance baseline covariates a priori (before treatment and before randomization) using the framework of minimax variance and a new method called kernel allocation. We show that any notion of a priori balance must go hand in hand with a notion of structure, since with no structure on the dependence of outcomes on baseline covariates complete randomization (no special covariate balance) is always minimax optimal. Restricting the structure of dependence, either parametrically or non-parametrically, gives rise to certain covariate imbalance metrics and optimal designs. This recovers many popular imbalance metrics and designs previously developed ad hoc, including randomized block designs, pairwise-matched allocation and rerandomization. We develop a new design method called kernel allocation based on the optimal design when structure is expressed by using kernels, which can be parametric or non-parametric. Relying on modern optimization methods, kernel allocation, which ensures nearly perfect covariate balance without biasing estimates under model misspecification, offers sizable advantages in precision and power as demonstrated in a range of real and synthetic examples. We provide strong theoretical guarantees on variance, consistency and rates of convergence and develop special algorithms for design and hypothesis testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.