Abstract

The spectral distribution of quantum detection efficiency of X- and γ-ray Schottky diodes based on semi-insulating CdTe or Cd0.9Zn0.1Te crystals is substantiated and obtained in analytical form. It is shown that the width of the space charge region (SCR) of 6–40 μm at zero bias in CdTe (Cd0.9Zn0.1Te) Schottky diode is optimal for detecting radiation in the photon energy range above 5–10 keV. Based on the Poisson equation, the relationship between the SCR width and the composition of impurities and the degree of their compensation are investigated. It is shown that the presence of deep levels in the bandgap leads to a considerable increase in space charge density and electric field strength near the crystal surface. However, this effect contributes a small error in the determination of the SCR width using the standard formula for the Schottky diode. It is also shown that the concentration of uncompensated impurities in CdTe and Cd0.9Zn0.1Te crystals within the 4 × 1011–1013 cm–3 range is optimal for the detection efficiency of X- and γ-rays in the photon high-energy range. The record-high values of energy resolution have been obtained in the spectra of 241Am, 57Co, 133Ba and 137Cs isotopes measured using CdTe crystals with Schottky diodes because the concentration of uncompensated donors in the CdTe crystals (1–2) × 1012 cm–3 falls on an interval of maximum detection efficiency. In the spectrum of 57Co isotope, the limiting energy resolution has been achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call