Abstract
An optimal wide area controller is designed in this paper for a 12-bus power system together with a Static Compensator (STATCOM). The controller provides auxiliary reference signals for the automatic voltage regulators (AVR) of the generators as well as the line voltage controller of the STATCOM in such a way that it improves the damping of the rotor speed deviations of the synchronous machines. Adaptive critic designs theory is used to implement the controller and enable it to provide nonlinear optimal control over the infinite horizon time of the problem and at different operating conditions of the power system. Simulation results are provided to indicate that the proposed wide area controller improves the damping of the rotor speed deviations of the generators during large scale disturbances. Moreover, a robust radial basis function network based identifier is presented in this paper to predict the states of a multimachine power system in real-time. This wide area state predictor (WASP) compensates for transport lags associated with the present communication technology for wide area monitoring of the electric power grid. The WASP is also robust to partial loss of information caused by larger than expected transport lags or even failed sensors throughout the network
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.