Abstract

This paper presents an approach for the optimal design of a new retrofit technique called weakening and damping that is valid for civil engineering inelastic structures. An alternative design methodology is developed with respect to the existing ones that is able to determine the locations and the magnitude of weakening and/or softening of structural elements and adding damping while insuring structural stability. An optimal polynomial controller that is a summation of polynomials in nonlinear states is used in Phase 1 of the method to reduce the peak response quantities of seismically excited nonlinear or hysteretic systems. The main advantage of the optimal polynomial controller is that it is able to automatically stabilize the structural system. The optimal design of a shear-type structure is used as an example to illustrate the feasibility of the proposed approach, which leads to a reduction of both peak inter-story drifts and peak total accelerations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.