Abstract

A new renewable warranty policy is suggested that increases probability of its success and can decrease warranty costs. An item from a heterogeneous population is inspected at some intermediate time during a warranty period and, if the observed level of degradation/wear exceeds some optimally predetermined value, it is screened out and replaced by the new one. Deterioration in homogeneous subpopulations of items is modeled by the inverse-Gaussian (IG) process, whereas heterogeneous populations are described by the mixed IG process. Probabilistic and cost analyses of the model are performed and the detailed illustrative example is presented and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.