Abstract

Interconnect shielding is used in VLSI designs to avoid noise interference from the cross-coupling capacitance between adjacent signals. This paper takes advantage of the shields already present in the design and uses them to tune the propagation delay of the clock signals, thus eliminating expensive dedicated delay buffers. The problem of obtaining the desired delay at a minimum shielding cost (silicon area) is formulated as a calculus of variations problem. An analytical solution shows that a square root shield profile is optimal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.