Abstract

Highly flammable substances such as hydrogen and silane are used in the semiconductor manufacturing process. When gas leaks, it is mixed with outside air and connected to a treatment facility through the duct inside the gas box. This study investigated optimal exhaust design to prevent fire explosions and health problems by optimizing the exhaust volume when hydrogen leaks from the gas box of semiconductor manufacturing equipment. After selecting the leakage rate amount based on the KS C IEC 60079-10-1, SEMI S6-0707E, and SEMI F-15 standards, a gas box was manufactured. Subsequently, the fan speed required to ventilate the gas box more than five times per minute according to the SEMI standard and the opening area and location that can reduce the lower explosive limit (LEL) to less than 25% in the event of hydrogen leakage were determined. When the air intakes were placed on the left and right, the flow rate was measured at 32 L per minute (LPM), and the maximum concentration was measured at 9111 ppm. This is less than 25% of the LEL of hydrogen and is believed to be capable of preventing fire and explosion, even if a similarly flammable gas leaks inside the gas box.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call