Abstract

Abstract This study describes a pickup and delivery vehicle routing problem, considering time windows in reality. The problem of tractor truck routes is formulated by a mixed integer programming model. Besides this, three algorithms - a guided local search, a tabu search, and simulated annealing - are proposed as solutions. The aims of our study are to optimize the number of internal tractor trucks used, and create optimal routes in order to minimize total logistics costs, including the fixed and variable costs of an internal vehicle group and the renting cost of external vehicles. Besides, our study also evaluates both the quality of solutions and the time to find optimal solutions to select the best suitable algorithm for the real problem mentioned above. A novel mathematical model is formulated by OR tools for Python. Compared to the current solution, our results reduced total costs by 18%, increased the proportion of orders completed by internal vehicles (84%), and the proportion of orders delivered on time (100%). Our study provides a mathematical model with time constraints and large job volumes for a complex distribution network in reality. The proposed mathematical model provides effective solutions for making decisions at logistics companies. Furthermore, our study emphasizes that simulated annealing is a more suitable algorithm than the two others for this vehicle routing problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.