Abstract

A digraph is upward planar if it has a planar drawing such that all the edges are monotone with respect to the vertical direction. Testing upward planarity and constructing upward planar drawings is important for displaying hierarchical network structures, which frequently arise in software engineering, project management, and visual languages. In this paper we investigate upward planarity testing of single-source digraphs; we provide a new combinatorial characterization of upward planarity and give an optimal algorithm for upward planarity testing. Our algorithm tests whether a single-source digraph with n vertices is upward planar in O(n) sequential time, and in O(log n) time on a CRCW PRAM with $n \log \log n/\log n$ processors, using O(n,) space. The algorithm also constructs an upward planar drawing if the test is successful. The previously known best result is an O(n2)-time algorithm by Hutton and Lubiw [Proc. 2nd ACM--SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, 1991, pp. 203--211]. No efficient parallel algorithms for upward planarity testing were previously known.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.