Abstract
In this article, we discuss the optimal scheduling problem of the recently introduced model for partial loss due to machine breakdowns, which fills up a significant gap in the existing literature. More specifically, we consider the problem of processing a number of jobs with arbitrary random processing times by a machine subject to general stochastic breakdowns, where each breakdown may cause an uncertain loss of the work achieved on the job being processed. The objective is to maximize the expected weighted discounted reward of completing the jobs in the class of unrestricted dynamic policies. We obtain the optimal dynamic polices using multi-armed bandit process methodology, which are characterized by a set of Gittins indices as solutions to a system of integral equations. Optimal solutions for a number of problems with specific loss patterns are derived. Application of the theory to the classical no-loss model is also discussed which leads to new results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.