Abstract
Error correcting codes with a universal set of transversal gates are a desideratum for quantum computing. Such codes, however, are ruled out by the Eastin-Knill theorem. Moreover, the theorem also rules out codes which are covariant with respect to the action of transversal unitary operations forming continuous symmetries. In this work, starting from an arbitrary code, we construct approximate codes which are covariant with respect to the entire group of local unitary gates in dimension $d\phantom{\rule{4pt}{0ex}}(<\ensuremath{\infty})$, using quantum reference frames. We show that our codes are capable of efficiently correcting different types of erasure errors. When only a small fraction of the $n$ qudits upon which the code is built are erased, our covariant code has an error that scales as $1/{n}^{2}$, which is reminiscent of the Heisenberg limit of quantum metrology. When every qudit has a chance of being erased, our covariant code has an error that scales as $1/n$. We show that the error scaling is optimal in both cases. Our approach has implications for fault-tolerant quantum computing, reference frame error correction, and the AdS-CFT duality.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.