Abstract

Consider a set X of points in the plane and a set E of non-crossing segments with endpoints in X. One can efficiently compute the triangulation of the convex hull of the points, which uses X as the vertex set, respects E, and maximizes the minimum internal angle of a triangle. In this paper we consider a natural extension of this problem: Given in addition a Steiner pointp, determine the optimal location of p and a triangulation of X ∪ {p} respecting E, which is best among all triangulations and placements of p in terms of maximizing the minimum internal angle of a triangle. We present a polynomial-time algorithm for this problem and then extend our solution to handle any constant number of Steiner points.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.