Abstract

Inferring gene regulatory networks from gene expression data is an important and challenging problem in the biology community. We propose OTVelo, a methodology that takes time-stamped single-cell gene expression data as input and predicts gene regulation across two time points. It is known that the rate of change of gene expression, which we will refer to as gene velocity, provides crucial information that enhances such inference; however, this information is not always available due to the limitations in sequencing depth. Our algorithm overcomes this limitation by estimating gene velocities using optimal transport. We then infer gene regulation using time-lagged correlation and Granger causality via regularized linear regression. Instead of providing an aggregated network across all time points, our method uncovers the underlying dynamical mechanism across time points. We validate our algorithm on 13 simulated datasets with both synthetic and curated networks and demonstrate its efficacy on 4 experimental data sets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.