Abstract

In this paper, an optimal-transport-based state estimation algorithm is applied to the debris-tracking problem, with real range data from a single ranging station. It is shown that the optimal-transport-based nonlinear data assimilation technique is more accurate, robust, and consistent than commonly used ensemble Kalman filtering, especially in astrodynamics problems where uncertainty evolves in a cylindrical coordinate system. It is further shown that the optimal-transport-based state estimation provides accurate 24 h predictions for space objects. This is critical for laser ranging stations, which may miss a pass due to inaccurate predictions. This study incorporates real observation data from the International Laser Ranging Service for two passes of the Starlette satellite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.