Abstract

Abstract We present several algorithms designed to learn a pattern of correspondence between 2 data sets in situations where it is desirable to match elements that exhibit a relationship belonging to a known parametric model. In the motivating case study, the challenge is to better understand micro-RNA regulation in the striatum of Huntington’s disease model mice. The algorithms unfold in 2 stages. First, an optimal transport plan P and an optimal affine transformation are learned, using the Sinkhorn–Knopp algorithm and a mini-batch gradient descent. Second, P is exploited to derive either several co-clusters or several sets of matched elements. A simulation study illustrates how the algorithms work and perform. The real data application further illustrates their applicability and interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.