Abstract

We consider channels affected by intersymbol interference with reduced-complexity, mutual information optimized, channel-shortening detection. For such settings, we optimize the transmit filter, taking into consideration the reduced receiver complexity constraint. As figure of merit, we consider the achievable information rate of the entire system and with functional analysis, we establish a general form of the optimal transmit filter, which can then be optimized by standard numerical methods. As a corollary to our main result, we obtain some insight of the behavior of the standard waterfilling algorithm for intersymbol interference channels. With only some minor changes, the general form we derive can be applied to multiple-input multiple-output channels with intersymbol interference. To illuminate the practical use of our results, we provide applications of our theoretical results by deriving the optimal shaping pulse of a linear modulation transmitted over a bandlimited additive white Gaussian noise channel which has possible applications in the faster-than-Nyquist/time packing technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.