Abstract

Massive Multiple Input Multiple Output (M-MIMO) systems depend on numerous antennas to transfer numerous data streams simultaneously in Wireless Network Systems. In M-MIMO systems, the optimal Transmit Antennas Selection remains as a major constraint. As the count of antennas is increased, the power or energy consumption also increases. In fact, for attaining higher capacity, more transmit antennas is required, which leads to an increase in power consumption. Hence, for solving these problems in M-MIMO systems, this paper intend to achieve the selection of optimal transmit antennas by considering a multi-objective problem that maximizes both the capacity and relative Energy Efficiency. For attaining this objective, the proposed novel optimization algorithm not only optimizes the number of transmit antennas but also optimizes which antenna has to be selected. Hence, for optimal selection of antennas, improved GSA is used here, based on a velocity vector, and hence the proposed scheme is termed as Modified Velocity vector based GSA (MV-GSA) that determines the number of antennas and how to select the antennas in an optimal way. Moreover, the adopted scheme is compared with conventional algorithms like Genetic Algorithm, Artificial Bee Colony, Particle Swarm Optimization, FireFly and conventional GSA and the results are obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.