Abstract

The gradual expansion of power transmission networks leads to an increase in short-circuit current (SCC), which has an impact on the secure operation of transmission networks when the SCC exceeds the interrupting capacity of the circuit breakers. In this regard, optimal transmission switching (OTS) is proposed to reduce the short-circuit current while maximizing the loadability with respect to voltage stability. However, the OTS model is a complex combinatorial optimization problem with binary decision variables. To address this problem, this paper employs the deep Q-network (DQN)-based RL algorithm to solve the OTS problem. Case studies on the IEEE 30-bus system and 118-bus system are presented to demonstrate the effectiveness of the proposed method. The numerical results show that the DQN-based agent can select the effective branches at each step and reduce the SCC after implementing the OTS strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call