Abstract
In recent years, with the widespread application of indoor inspection robots, efficient motion planning has become crucial. Addressing the issue of discontinuous and suboptimal robot trajectories resulting from the independent nature of global and local planning, we propose a novel optimal path-planning method for wheeled mobile robots. This method leverages differential flatness to reduce dimensionality and decouple the problem, achieving globally optimal, collision-free paths in a two-dimensional flat output space through diagonal search and polynomial trajectory optimization. Comparative experiments in a simulated environment demonstrate that the proposed improved path search algorithm reduces search time by 46.6% and decreases the number of visited nodes by 43.1% compared to the original algorithm. This method not only ensures the optimal path and efficient planning but also ensures that the robot’s motion trajectory satisfies the dynamic constraints, verifying the effectiveness of the proposed optimal path planning algorithm for wheeled mobile robots.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.