Abstract

In this article, we introduce an approach for planning minimum-control optimal trajectories for a two-wheeled mo bile robot in the absence of obstacles. The trajectory planning problem is first formulated as a minimum-control, fixed-time, optimal control problem with no terminal cost. This results in a two-point boundary value problem that is numerically solved using the relaxation method. Some simulation results of the relaxation method are presented. While we cannot claim rigor ously that the trajectories obtained here are globally optimal, there is strong evidence from numerical robustness tests that they are well-isolated extrema, and are possibly the globally optimal solutions. The two-point boundary value problem is also solved analytically. It is shown that the optimal motion of the two-wheeled mobile robot is similiar to the motion of a pendulum in a gravitational field, and as such, is described by four constants of motion. A procedure for solving the constants of motion is discussed. At the end, it is possible to obtain a closed-form solution to the optimal trajectories in terms of Jacobian elliptic functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.