Abstract

This paper studies trajectory generation for a mothership that tows a drogue using a flexible cable. The contributions of this paper include model validation for the towed cable system described by a lumped mass extensible cable using flight data, and optimal trajectory generation for the towed cable system with tension constraints using model predictive control. The optimization problem is formulated using a combination of the squared error and -norm objective functions. Different desired circular trajectories of the towed body are used to calculate optimal trajectories for the towing vehicle subject to performance limits and wind disturbances. Trajectory generation for transitions from straight and level flight into an orbit is also presented. The computational efficiency is demonstrated, which is essential for potential real-time applications. This paper gives a framework for specifying an arbitrary flight path for the towed body by optimizing the action of the towing vehicle subject to constraints.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.