Abstract
In this paper it is shown that Lagrangian Coherent Structures (LCS) are useful in determining near optimal trajectories for autonomous underwater gliders in a dynamic ocean environment. This opens the opportunity for optimal path planning of autonomous underwater vehicles by studying the global flow geometry via dynamical systems methods. Optimal glider paths were computed for a 2-dimensionaI kinematic model of an end-point glider problem. Numerical solutions to the optimal control problem were obtained using Nonlinear Trajectory Generation (NTG) software. The resulting solution is compared to corresponding results on LCS obtained using the Direct Lyapunov Exponent method. The velocity data used for these computations was obtained from measurements taken in August, 2000, by HF-Radar stations located around Monterey Bay, CA, USA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.