Abstract

This paper introduces a methodology for an optimization-based trajectory planner for the autonomous transition of a quadrotor biplane tailsitter (QRBP) between the flight modes of hover to forward flight and forward flight to hover. The trajectory planner uses a simplified first principles dynamic model of the QRBP in the formulation of a optimization problem for trajectory planning. Additional constraints on the trajectory are imposed based on physical limitations, such as available power, stall limits, among others. The cost function for the optimization problem is chosen to be the time-of-transition. The solution of this problem generates time-optimal state and input trajectories for transition. To validate the algorithm, the trajectories are tested on a flight dynamics simulation of a QRBP to demonstrate feasibility and tracking performance with an inner-loop PID feedback controller; and compared against trajectories generated from a heuristic approach. The results of the simulated tracking performance indicate the proposed trajectory planner is capable of generating feasible transition trajectories for the previously specified flight modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.