Abstract

The efficient execution of a rendezvous maneuver is an essential component of various types of space missions. This work describes the formulation and numerical investigation of the thrust function required to minimize the time or fuel required for the terminal phase of the rendezvous of two spacecraft. The particular rendezvous studied concerns a target spacecraft in a circular orbit and a chaser spacecraft with an initial separation distance and separation velocity in all three dimensions. First, the time-optimal rendezvous is investigated followed by the fuel-optimal rendezvous for three values of the max-thrust acceleration via the sequential gradient-restoration algorithm. Then, the time-optimal rendezvous for given fuel and the fuel-optimal rendezvous for given time are investigated. There are three controls, one determining the thrust magnitude and two determining the thrust direction in space.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call