Abstract
This paper presents an optimal training subset for support vector regression (SVR) under deregulated power, which has a distinct advantage over SVR based on the full training set, since it solves the problem of large sample memory complexity O(N2) and prevents over-fitting during unbalanced data regression. To compute the proposed optimal training subset, an approximation convexity optimization framework is constructed through coupling a penalty term for the size of the optimal training subset to the mean absolute percentage error (MAPE) for the full training set prediction. Furthermore, a special method for finding the approximate solution of the optimization goal function is introduced, which enables us to extract maximum information from the full training set and increases the overall prediction accuracy. The applicability and superiority of the presented algorithm are shown by the half-hourly electric load data (48 data points per day) experiments in New South Wales under three different sample sizes. Especially, the benefit of the developed methods for large data sets is demonstrated by the significantly less CPU running time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.