Abstract

Correlation methods are becoming increasingly attractive tools for image recognition and location. This renewed interest in correlation methods is spurred by the availability of high-speed image processors and the emergence of correlation filter designs that can optimize relevant figures of merit. In this paper, a new correlation filter design method is presented that allows one to optimally tradeoff among potentially conflicting correlation output performance criteria while achieving desired correlation peak value behavior in response to in-plane rotation of input images. Such controlled in-plane rotation response is useful in image analysis and pattern recognition applications where the sensor follows a pre-arranged trajectory while imaging an object. Since this new correlation filter design is based on circular harmonic function (CHF) theory, we refer to the resulting filters as optimal tradeoff circular harmonic function (OTCHF) filters. Underlying theory, OTCHF filter design method, and illustrative numerical results are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.