Abstract

The jointly optimized sampling rate and quantization precision in A/D conversion is studied. In particular, we consider a basic pulse code modulation A/D scheme in which a stationary process is sampled and quantized by a scalar quantizer. We derive an expression for the minimal mean squared error under linear estimation of the analog input from the digital output, which is also valid under sub-Nyquist sampling. This expression allows for the computation of the sampling rate that minimizes the error under a fixed bitrate at the output, which is the result of an interplay between the number of bits allocated to each sample and the distortion resulting from sampling. We illustrate the results for several examples, which demonstrate the optimality of sub-Nyquist sampling in certain cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.