Abstract

In this paper, a new technique of time-delay compensation is proposed for active control of a flexible hub–beam system. The first-order approximation coupling (FOAC) model proposed recently for dynamics of hub–beam systems is used to verify the applicability of this technique. The FOAC model is first linearized to obtain a linearized equation. The linearized equation with time delay is then transformed into a standard form with no time delay by a particular integral transformation. The time-delay controller is designed based on this standard equation using the classical optimal tracking control theory. Since the controller is a function of modal coordinates, a modal filter is presented to estimate the modal coordinates from physical sensor measurements. The effectiveness of the proposed technique for time delay is demonstrated by numerical simulations. Simulation results indicate that a very small time delay may result in instability of the control system if it is not compensated in control design. The proposed time-delay controller is effective in controlling the system even when the maximum time delay for stability without time-delay compensation is greatly exceeded. Moreover, for the system without time delay, the proposed time-delay controller may possibly obtain much better control effectiveness than the controller without time delay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call