Abstract

In this study, a new approach based on adaptive dynamic programming (ADP) is proposed to control permanent magnet synchronous motors (PMSMs). The objective of this study is to control the torque and consequently the speed of a PMSM when an unknown load torque is applied to it. The proposed controller achieves a fast transient response, low ripples and small steady-state error. The control algorithm uses two neural networks, called critic and actor. The former is utilised to evaluate the cost and the latter is used to generate control signals. The training is done once offline and the calculated optimal weights of actor network are used in online control to achieve fast and accurate torque control of PMSMs. This algorithm is compared with field oriented control (FOC) and direct torque control based on space vector modulation. Simulations and experimental results show that the proposed algorithm provides desirable results under both accurate and uncertain modelled dynamics. Although the performance of FOC method is comparable with ADP under nominal conditions, the torque and speed response of ADP is better than FOC under realistic scenarios, that is, when parameter uncertainties exist.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.