Abstract

In this paper, optimal design and assessment of the capability of tuned mass dampers (TMDs) in improving the seismic behavior of confined masonry walls as the main element of historical buildings has been studied. For this purpose, the design parameters of TMDs have been determined through the minimization of wall response using Genetic algorithms (GAs). For simulation the behavior of confined masonry wall under earthquake, the triple linear shear beam model has been used. For illustration, the method has been tested on confined masonry walls equipped with linear TMDs. To study the effects of frequency content and peak ground acceleration (PGA) of earthquake records on the performance of TMDs, the controlled walls have been subjected to different earthquake records. Results have shown that the proposed method has been effective in designing optimal TMDs regarding the convergence and simplicity behavior of GA in solving the optimization problem. It has also been shown that using TMD enhances the seismic behavior of confined masonry walls which its efficiency depends on the earthquake characteristics and the mass ratio. Finally, it can be concluded that the results of this research could be used as guides to design TMDs for historical and heritage buildings

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.