Abstract
It is known that weight-bearing exercises under Ilizarov circular fixators (ICF) could enhance bone fracture healing by mechano-regulation. However, interfragmentary movements at the fracture site induced by weight-bearing may inhibit angiogenesis and ultimately delay the healing process. To tackle this challenge, a computational model is presented in this study which considers the spatial and temporal changes in mechanical properties of fracture callus to predict optimal levels of weight-bearing during fracture healing under ICF. The study takes sheep fractures as example and shows that the developed model has the capability of predicting patient specific, time-dependent optimal levels of weight-bearing which enhances mechano-regulation mediated healing without hindering the angiogenesis process. The results demonstrate that allowable level of weight-bearing and timings depend on fracture gap size. For normal body weights (BW) and moderate fracture gap sizes (e.g. 3 mm), weight-bearing with 30% BW could start by week 4 post-operation and gradually increase to 100% BW by week 11. In contrast, for relatively large fracture gap sizes (i.e. 6 mm), weight-bearing is recommended to commence in later stages of healing (e.g. week 11 post-operation). Furthermore, increasing ICF stiffness (e.g. using half pins instead of pretension wires) can increase the level of weight-bearing significantly in the early stages up to a certain time point (e.g. week 8 post-operation) beyond which no noticeable benefits could be achieved. The findings of this study have potential applications in designing post-operative weight bearing exercises.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.