Abstract

Fracton models provide examples of novel gapped quantum phases of matter that host intrinsically immobile excitations and therefore lie beyond the conventional notion of topological order. Here, we calculate optimal error thresholds for quantum error correcting codes based on fracton models. By mapping the error-correction process for bit-flip and phase-flip noises into novel statistical models with Ising variables and random multibody couplings, we obtain models that exhibit an unconventional subsystem symmetry instead of a more usual global symmetry. We perform large-scale parallel tempering MonteCarlo simulations to obtain disorder-temperature phase diagrams, which are then used to predict optimal error thresholds for the corresponding fracton code. Remarkably, we found that the X-cube fracton code displays a minimum error threshold (7.5%) that is much higher than 3D topological codes such as the toric code (3.3%), or the color code (1.9%). This result, together with the predicted absence of glass order at the Nishimori line, shows great potential for fracton phases to be used as quantum memory platforms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.