Abstract

223Radium dichloride image-based individual dosimetry requires an optimal acquisition and reconstruction protocol and proper image correction methods for theranostic applications. To assess this problem, radium-223 dichloride SPECT images were acquired from a Jaszczak simulator with a dual-headed gamma camera, LEHR collimator, 128 × 128 matrix, and total time of 32 minutes. A cylindrical PMMA phantom was used to calibrate the measurements performed with Jaszczak. The image quality parameters (noise coefficient, contrast, contrast-to-noise ratio and recovery coefficient) and septal penetration correction were calculated by MATLAB®. The best results for the investigated image quality parameters were obtained with an 89 keV energy window (24% wide) produced together with OSEM/MLEM reconstruction (8 subsets and 4 iterations) applying a Butterworth filter (order 10 and cutoff frequency of 0.48 cycles·cm−1). The successfully performed recovery coefficient parameter evaluation allows uptake correction for future patient dosimetry applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call