Abstract

Quasi-cyclic codes have provided a rich source of good linear codes. Previous constructions of quasi-cyclic codes have been confined mainly to codes whose length is a multiple of the dimension. In this paper it is shown how searches may be extended to codes whose length is a multiple of some integer which is greater than the dimension. The particular case of 5-dimensional codes over GF(3) is considered and a number of optimal codes (i.e., [n, k, d]-codes having largest possible minimum distance d for given length n and dimension k) are constructed. These include ternary codes with parameters [45, 5, 28], [36, 5, 22], [42, 5, 26], [48, 5, 30] and [72, 5, 46], all of which improve on the previously best known bounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.