Abstract

This paper considers robot motion planning under temporal logic constraints in probabilistic maps obtained by semantic simultaneous localization and mapping (SLAM). The uncertainty in a map distribution presents a great challenge for obtaining correctness guarantees with respect to the linear temporal logic (LTL) specification. We show that the problem can be formulated as an optimal control problem in which both the semantic map and the logic formula evaluation are stochastic. Our first contribution is to reduce the stochastic control problem for a subclass of LTL to a deterministic shortest path problem by introducing a confidence parameter $delta$. A robot trajectory obtained from the deterministic problem is guaranteed to have minimum cost and to satisfy the logic specification in the true environment with probability $delta$. Our second contribution is to design an admissible heuristic function that guides the planning in the deterministic problem towards satisfying the temporal logic specification. This allows us to obtain an optimal and very efficient solution using the A* algorithm. The performance and correctness of our approach are demonstrated in a simulated semantic environment using a differential-drive robot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.