Abstract

The current study proposes a model of an autonomous HRFS installed on different sites in 20 Saudi cities powered by renewable clean energy sources. The station is fully powered by photovoltaic (PV) panels and wind turbines involving an electrolyzer and hydrogen tank for producing and storing hydrogen. Three scenarios are investigated to propose an optimized model, namely Scenario 1 containing (PV-Wind-Battery) system, Scenario 2 with (Wind-Battery) technologies, and Scenario 3 with (PV-Battery) components. The HRFS is expected to feed the load hydrogen demand of 25 hydrogen cars with a storage tank capacity of 5 kg. The simulation is carried out using the well-known HOMER software and the description of the technical parameters of the renewable plant together with a detailed economic feasibility for the investigated cities are also performed. Furthermore, the optimization process executed demonstrates a competitive levelized cost of energy (LCOE) and levelized cost of hydrogen (LCOH) especially for the third scenario with a LCOH varying within $12–15.9/kg and LCOE in range $ 0.332–0.414/kWh, for all 20 cities. For instance, encouraging lowest values of net present cost (NPC) and LCOE are obtained for the futuristic NEOM mega city relatively to the first and third scenarios with values (NPC = $1,576,000, LCOE = $ 0.627/kWh) and (NPC = $830,494, LCOE = $ 0.332/kWh), respectively. On another hand, thorough analysis of PV/Wind hydrogen technoeconomic operation is provided including improvements recommendations, scenarios comparison and environmental impact discussion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call