Abstract
ABSTRACTIn two‐dimensional spectrographs, the optical distortions in the spatial and dispersion directions produce variations in the subpixel sampling of the background spectrum. Using knowledge of the camera distortions and the curvature of the spectral features, one can recover information regarding the background spectrum on wavelength scales much smaller than a pixel. As a result, one can propagate this better sampled background spectrum through inverses of the distortion and rectification transformations and accurately model the background spectrum in two‐dimensional spectra for which the distortions have not been removed (i.e., the data have not been rebinned/rectified). The procedure, as outlined in this paper, is extremely insensitive to cosmic rays, hot pixels, etc. Because of this insensitivity to discrepant pixels, sky modeling and subtraction need not be performed as one of the later steps in a reduction pipeline. Sky subtraction can now be performed as one of the earliest tasks, perhaps just after dividing by a flat field. Because subtraction of the background can be performed without having to “clean” cosmic rays, such bad pixel values can be trivially identified after removal of the two‐dimensional sky background.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Publications of the Astronomical Society of the Pacific
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.